Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Green synthesis of copper ions nanoparticles functionalized with rhamnolipid as potential antibacterial agent for pathogenic bacteria
oleh: Fera Faridatul Habibah, Wa Ode Sri Rizki, Atthar Luqman Ivansyah, Dea Indriani Astuti, Rukman Hertadi
| Format: | Article |
|---|---|
| Diterbitkan: | Elsevier 2024-01-01 |
Deskripsi
Copper-based nanoparticles possess broad-spectrum antibacterial activity against both gram-positive and gram-negative bacteria, making them a cost-effective alternative to other metal-based nanoparticles. The development of eco-friendly copper based nanopaticles using biodegradable and non-toxic biosurfactants, such as rhamnolipid is being explored in this study. In the present study, Cu(I)-rhamnolipid nanoparticles (Cu(I)-Rl Nps) was prepared by coprecipitation method. The structural analysis by using FTIR and XRD techniques revealed that Cu(I)-Rl Nps was successfully produced, as indicated by the detectable of ionic and covalent-coordinations bond between rhamnolipid and Cu(I) ions. Further analysis using TEM, PSA and ZPA suggest that the resulted Cu(I)-Rl Nps have spherical shape with the diameter range of 141.7–536.3 nm and the surface charge of −30 mV, respectively. The antibacterial activity of Cu(I)-Rl Nps surpassed that of the copper-based nanoparticles, free-state Cu(I) ions and rhamnolipid, which was determined by MIC/MBC methods. The Cu(I)-Rl Nps inhibition to the growth of Bacillus subtilis ATCC 6633 (Gram-positive) gave the MIC/MBC values of 19/19 μg/mL, while the copper-based nanoparticles, free-state Cu(I) ions and rhamnolipid gave the MIC/MBC value of 1250/2500, 1250/1250, 62/62 μg/mL, respectively. Further test on Escherichia coli ATCC 6538 (Gram-negative) showed that the Cu(I)-Rl Nps gave the MIC/MBC value of 78/78 μg/mL, while the copper-based nanoparticles, free-state Cu(I) ions and rhamnolipid gave the MIC/MBC value of 2500/2500, 2500/2500, 2000/2000 μg/mL, respectively. The increased antibacterial activity of Cu(I)-Rl Nps was due to the synergistic effects between Cu(I) and rhamnolipid.