Demonstration of 10 nm Ferroelectric Al<sub>0.7</sub>Sc<sub>0.3</sub>N-Based Capacitors for Enabling Selector-Free Memory Array

oleh: Li Chen, Chen Liu, Hock Koon Lee, Binni Varghese, Ronald Wing Fai Ip, Minghua Li, Zhan Jiang Quek, Yan Hong, Weijie Wang, Wendong Song, Huamao Lin, Yao Zhu

Format: Article
Diterbitkan: MDPI AG 2024-01-01

Deskripsi

In this work, 10 nm scandium-doped aluminum nitride (AlScN) capacitors are demonstrated for the construction of the selector-free memory array application. The 10 nm Al<sub>0.7</sub>Sc<sub>0.3</sub>N film deposited on an 8-inch silicon wafer with sputtering technology exhibits a large remnant polarization exceeding 100 µC/cm<sup>2</sup> and a tight distribution of the coercive field, which is characterized by the positive-up-negative-down (PUND) method. As a result, the devices with lateral dimension of only 1.5 μm show a large memory window of over 250% and a low power consumption of ~40 pJ while maintaining a low disturbance rate of <2%. Additionally, the devices demonstrate stable multistate memory characteristics with a dedicated operation scheme. The back-end-of-line (BEOL)-compatible fabrication process, along with all these device performances, shows the potential of AlScN-based capacitors for the implementation of the high-density selector-free memory array.