Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator
oleh: Kai-Hao Chang, Zhan-Hong Lin, Po-Tsung Lee, Jer-Shing Huang
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2023-03-01 |
Deskripsi
Abstract Plasmonic waveguides allow focusing, guiding, and manipulating light at the nanoscale and promise the miniaturization of functional optical nanocircuits. Dielectric-loaded plasmonic (DLP) waveguides and logic gates have drawn attention because of their relatively low loss, easy fabrication, and good compatibility with gain and active tunable materials. However, the rather low on/off ratio of DLP logic gates remains the main challenge. Here, we introduce an amplitude modulator and theoretically demonstrate an enhanced on/off ratio of a DLP logic gate for XNOR operation. Multimode interference (MMI) in DLP waveguide is precisely calculated for the design of the logic gate. Multiplexing and power splitting at arbitrary multimode numbers have been theoretically analyzed with respect to the size of the amplitude modulator. An enhanced on/off ratio of 11.26 dB has been achieved. The proposed amplitude modulator can also be used to optimize the performance of other logic gates or MMI-based plasmonic functional devices.