Computer Simulations of a Twist Bend Nematic (N<sub>TB</sub>): A Coarse-Grained Simulation of the Phase Behaviour of the Liquid Crystal Dimer CB7CB

oleh: Mark R. Wilson, Gary Yu

Format: Article
Diterbitkan: MDPI AG 2023-03-01

Deskripsi

In recent years, a number of achiral liquid crystal dimer molecules have been shown to exhibit nematic–nematic phase transitions. The lower temperature phase has been identified as the N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>TB</mi></msub></semantics></math></inline-formula> phase, which demonstrates emergent chirality in the spontaneous formation of a heliconical structure. Recent fully atomistic simulations of the molecule CB7CB (1,7-bis-4-(4<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula>-cyanobiphenyl) heptane), a dimer with an odd number of carbon spacers between the mesogenic parts of the molecule, have captured the N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>TB</mi></msub></semantics></math></inline-formula>–N–I phase sequence, providing a picture of the order at a molecular level. In this paper, we use atomistic simulations of CB7CB to develop a coarse-grained model using systematic coarse graining in the N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>TB</mi></msub></semantics></math></inline-formula> phase. We use both force matching (in the form of the MS-CG method) and iterative Boltzmann inversion (IBI) methodologies. Both techniques capture the heliconical order within the N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>TB</mi></msub></semantics></math></inline-formula> phase. Moreover, the model developed via force matching is shown to provide an excellent representation of the atomistic simulation reference model and, remarkably, demonstrates good transferability across temperatures, allowing the N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>TB</mi></msub></semantics></math></inline-formula>–N and N–I phase transitions to be simulated. We also compare results with those of a Martini 3-based coarse-grained model.