Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
How abundant are superoxide and hydrogen peroxide in the vasculature lumen, how far can they reach?
oleh: Tânia Sousa, Marcos Gouveia, Rui D.M. Travasso, Armindo Salvador
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2022-12-01 |
Deskripsi
Paracrine superoxide (O2•−) and hydrogen peroxide (H2O2) signaling critically depends on these substances' concentrations, half-lives and transport ranges in extracellular media. Here we estimated these parameters for the lumen of human capillaries, arterioles and arteries using reaction-diffusion-advection models. These models considered O2•− and H2O2 production by endothelial cells and uptake by erythrocytes and endothelial cells, O2•− dismutation, O2•− and H2O2 diffusion and advection by the blood flow. Results show that in this environment O2•− and H2O2 have half-lives <60. ms and <40. ms, respectively, the former determined by the plasma SOD3 activity, the latter by clearance by endothelial cells and erythrocytes. H2O2 concentrations do not exceed the 10 nM scale. Maximal O2•− concentrations near vessel walls exceed H2O2's several-fold when the latter results solely from O2•− dismutation. Cytosolic dismutation of inflowing O2•− may thus significantly contribute to H2O2 delivery to cells. O2•− concentrations near vessel walls decay to 50% of maximum 12 μm downstream from O2•− production sites. H2O2 concentrations in capillaries decay to 50% of maximum 22 μm (6.0 μm) downstream from O2•− (H2O2) production sites. Near arterioles' (arteries') walls, they decay by 50% within 6.0 μm (4. μm) of H2O2 production sites. However, they reach maximal values 50 μm (24 μm) downstream from O2•− production sites and decrease by 50% over 650 μm (500 μm). Arterial/olar endothelial cells might thus signal over a mm downstream through O2•−-derived H2O2, though this requires nM-sensitive H2O2 transduction mechanisms.