Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Hydrogen Storage on Porous Carbon Adsorbents: Rediscovery by Nature-Derived Algorithms in Random Forest Machine Learning Model
oleh: Hung Vo Thanh, Sajad Ebrahimnia Taremsari, Benyamin Ranjbar, Hossein Mashhadimoslem, Ehsan Rahimi, Mohammad Rahimi, Ali Elkamel
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-02-01 |
Deskripsi
Porous carbons as solid adsorbent materials possess effective porosity characteristics that are the most important factors for gas storage. The chemical activating routes facilitate hydrogen storage by adsorbing on the high surface area and microporous features of porous carbon-based adsorbents. The present research proposed to predict H<sub>2</sub> storage using four nature-inspired algorithms applied in the random forest (RF) model. Various carbon-based adsorbents, chemical activating agents, ratios, micro-structural features, and operational parameters as input variables are applied in the ML model to predict H<sub>2</sub> uptake (wt%). Particle swarm and gray wolf optimizations (PSO and GWO) in the RF model display accuracy in the train and test phases, with an R<sup>2</sup> of ~0.98 and 0.91, respectively. Sensitivity analysis demonstrated the ranks for temperature, total pore volume, specific surface area, and micropore volume in first to fourth, with relevancy scores of 1 and 0.48. The feasibility of algorithms in training sizes 80 to 60% evaluated that RMSE and MAE achieved 0.6 to 1, and 0.38 to 0.52. This study contributes to the development of sustainable energy sources by providing a predictive model and insights into the design of porous carbon adsorbents for hydrogen storage. The use of nature-inspired algorithms in the model development process is also a novel approach that could be applied to other areas of materials science and engineering.