Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On an Anti-Torqued Vector Field on Riemannian Manifolds
oleh: Sharief Deshmukh, Ibrahim Al-Dayel, Devaraja Mallesha Naik
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-09-01 |
Deskripsi
A torqued vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is a torse-forming vector field on a Riemannian manifold that is orthogonal to the dual vector field of the 1-form in the definition of torse-forming vector field. In this paper, we introduce an anti-torqued vector field which is opposite to torqued vector field in the sense it is parallel to the dual vector field to the 1-form in the definition of torse-forming vector fields. It is interesting to note that anti-torqued vector fields do not reduce to concircular vector fields nor to Killing vector fields and thus, give a unique class among the classes of special vector fields on Riemannian manifolds. These vector fields do not exist on compact and simply connected Riemannian manifolds. We use anti-torqued vector fields to find two characterizations of Euclidean spaces. Furthermore, a characterization of an Einstein manifold is obtained using the combination of a torqued vector field and Fischer–Marsden equation. We also find a condition under which the scalar curvature of a compact Riemannian manifold admitting an anti-torqued vector field is strictly negative.