Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Feasibility of Solar Grid-Based Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector
oleh: Harpreet Sharma, Sachin Mishra, Javed Dhillon, Naveen Kumar Sharma, Mohit Bajaj, Rizwan Tariq, Ateeq Ur Rehman, Muhammad Shafiq, Habib Hamam
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2022-01-01 |
Deskripsi
The increased popularity of small-scale DER has replaced the well-established concept of conventional generating plants around the world. In the present energy scenario, a significant share of energy production now comes from the grid integrated DERs installed at various consumer premises. These DERs are being renewable-based generates only intermittent power, which in turn makes the scheduling of electrical dispatch a tough task. The Virtual Power Plant (VPP) is a potential solution to this challenge, which coordinates and aggregates the DERs generation into a single controllable profile. In this paper, a modified PSO-based multi-objective optimization is proposed for the VPP scheduling in distribution network applications such as energy cost minimization, peak shaving, and reliability improvement. For feasibility analysis of the VPP, a case study of state power utility is taken, which includes a 90 bus industrial feeder with grid integrated PVs as DER. The optimized results are computed in both grid-connected and autonomous mode reveal that the operating cost, peak demand, and <i>EENS</i> are declined by 31.70%, 23.59%, and 62.30% respectively. The overall results obtained are compared by the results obtained from other well-established optimization techniques and it is found that the proposed technique is comparatively more cost-effective than others.