Structural, Electronic and Magnetic Properties of a Few Nanometer-Thick Superconducting NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> Films

oleh: Marco Moretti Sala, Marco Salluzzo, Matteo Minola, Gabriella Maria De Luca, Greta Dellea, Vesna Srot, Yi Wang, Peter A. van Aken, Matthieu Le Tacon, Bernhard Keimer, Claudia Dallera, Lucio Braicovich, Giacomo Ghiringhelli

Format: Article
Diterbitkan: MDPI AG 2020-04-01

Deskripsi

Epitaxial films of high critical temperature (<inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>) cuprate superconductors preserve their transport properties even when their thickness is reduced to a few nanometers. However, when approaching the single crystalline unit cell (u.c.) of thickness, <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> decreases and eventually, superconductivity is lost. Strain originating from the mismatch with the substrate, electronic reconstruction at the interface and alteration of the chemical composition and of doping can be the cause of such changes. Here, we use resonant inelastic x-ray scattering at the Cu <inline-formula> <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>3</mn> </msub> </semantics> </math> </inline-formula> edge to study the crystal field and spin excitations of NdBa<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>Cu<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>7</mn> <mo>−</mo> <mi>x</mi> </mrow> </msub> </semantics> </math> </inline-formula> ultrathin films grown on SrTiO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>, comparing 1, 2 and 80 u.c.-thick samples. We find that even at extremely low thicknesses, the strength of the in-plane superexchange interaction is mostly preserved, with just a slight decrease in the 1 u.c. with respect to the 80 u.c.-thick sample. We also observe spectroscopic signatures for a decrease of the hole-doping at low thickness, consistent with the expansion of the <i>c</i>-axis lattice parameter and oxygen deficiency in the chains of the first unit cell, determined by high-resolution transmission microscopy and x-ray diffraction.