Structural Optimization Study on a Three-Degree-of-Freedom Piezoelectric Ultrasonic Transducer

oleh: Zhizhong Wu, Zhao Zhang, Deguang Wu, Yuanhang Chen, Fan Hu, Chenxin Guo, Lijun Tang

Format: Article
Diterbitkan: MDPI AG 2024-05-01

Deskripsi

A three-degree-of-freedom (3-DOF) piezoelectric ultrasonic transducer is a critical component in elliptical and longitudinal ultrasonic vibration-assisted cutting processes, with its geometric structure directly influencing its performance. This paper proposes a structural optimization method based on a convolutional neural network (CNN) and non-dominated sorting genetic algorithm II (NSGA2). This method establishes a transducer lumped model to obtain the electromechanical coupling coefficients (X-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula> and Z-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula>) and thermal power (X-<i>P</i>) indicators, evaluating the bending and longitudinal vibration performance of the transducer. By creating a finite element model of the transducer with mechanical losses, a dataset of different transducer performance parameters, including the tail mass, piezoelectric stack, and dimensions of the horn, is obtained. Training a CNN model with this dataset yields objective functions for the relationship between different transducer geometric structures and performance parameters. The NSGA2 algorithm solves the X-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula> and Z-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula> objective functions, obtaining the Pareto set of the transducer geometric dimensions and determining the optimal transducer geometry in conjunction with X-<i>P</i>. This method achieves simultaneous improvements in X-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula> and Z-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>k</mi><mi>e</mi></msub></semantics></math></inline-formula> of the transducer by 22.33% and 25.89% post-optimization and reduces X-<i>P</i> to 18.97 W. Furthermore, the finite element simulation experiments of the transducer validate the effectiveness of this method.