Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Nonlinear MHD modeling of neon doped shattered pellet injection with JOREK and its comparison to experiments in KSTAR
oleh: S.-J. Lee, D. Hu, M. Lehnen, E. Nardon, Jayhyun Kim, D. Bonfiglio, F.J. Artola, M. Hoelzl, Yong-Su Na, JOREK team
Format: | Article |
---|---|
Diterbitkan: | IOP Publishing 2024-01-01 |
Deskripsi
3D nonlinear MHD simulations of neon-doped single shattered pellet injection (SPI) conducted with the JOREK code reveal rich physics during SPI-induced disruptions in KSTAR. In the early phase, pressure-driven modes dominate, and the perturbation of the plasma current is largely consistent with the perturbation of the Pfirsch–Schlüter current. As shards reach the q = 1 surface, resistive current perturbations by helical electron cooling start to dominate, and the electron temperature in the core begins to collapse with convective mixing of the density driven by the internal $1/1$ kink mode. The confinement of the plasma is later completely destroyed as a cold bubble convects into the core via quasi-interchange mode. Comparisons with available experimental data demonstrate qualitative agreements between JOREK results and experiments, and possible reasons for deviations are discussed.