Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells

oleh: Liann-Be Chang, Chzu-Chiang Tseng, Gwomei Wu, Wu-Shiung Feng, Ming-Jer Jeng, Lung-Chien Chen, Kuan-Lin Lee, Ewa Popko, Lucjan Jacak, Katarzyna Gwozdz

Format: Article
Diterbitkan: MDPI AG 2019-02-01

Deskripsi

This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (&lt;400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub>/perovskite/C<sub>60</sub>/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM layers were annealed at various temperatures of 400, 500, and 600 &#176;C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability.