Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Maximum Detour–Harary Index for Some Graph Classes
oleh: Wei Fang, Wei-Hua Liu, Jia-Bao Liu, Fu-Yuan Chen, Zhen-Mu Hong, Zheng-Jiang Xia
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2018-11-01 |
Deskripsi
The definition of a Detour⁻Harary index is <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ω</mi> <mi>H</mi> <mrow> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mo>∑</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>∈</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mfrac> <mn>1</mn> <mrow> <mi>l</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">|</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </semantics> </math> </inline-formula>, where <i>G</i> is a simple and connected graph, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>l</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">|</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is equal to the length of the longest path between vertices <i>u</i> and <i>v</i>. In this paper, we obtained the maximum Detour⁻Harary index about unicyclic graphs, bicyclic graphs, and cacti, respectively.