Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Excitation wavelength dependent triple-mode photoluminescence of copper-based halides for advanced anti-counterfeiting
oleh: Chengjun Liu, Yuyi Zhang, Manman Luo, Lixi Wang, Xingyu Liu, Jiangyong Pan, Zihan Zhao, Fan Fang, Lei Mao, Yuling Huang, Bingqi Wang, Congyuan Lin, Wei Lei, Qing Li, Zhiwei Zhao, Jun Wu, Zhuoya Zhu, Mehmet Ertugrul, Xiaobing Zhang, Jing Chen, Dewei Zhao
Format: | Article |
---|---|
Diterbitkan: | AIP Publishing LLC 2023-07-01 |
Deskripsi
New fluorescent materials with a low cost, hypotoxicity, and concealment are desired for the application of anti-counterfeiting. Herein, we report a CsCu2I3@Cs3Cu2I5 composite with a triple-mode photoluminescence (PL) feature by simply adjusting the excitation wavelengths, which are ascribed to the multiple excited states of different phases in the CsCu2I3@Cs3Cu2I5 composite. The broadband emission and high quantum yield (∼51%) of the composite originate from the structure-oriented self-trapped excitons effect of Cs3Cu2I5 and CsCu2I3 phases. Moreover, the incorporation of polyethylene oxide (PEO) into this composite improves the stability of CsCu2I3@Cs3Cu2I5@PEO against harsh environments. The CsCu2I3@Cs3Cu2I5@PEO composite has a slight decay of ∼5% of its initial PL intensity and only a 3.5% shift of the corresponding color coordinate after 30 days of storage. More importantly, its initial PL intensity shows only 10.3% decay under ultraviolet exposure for 200 h. Our work provides a promising approach to design materials for advanced anti-counterfeiting applications.