Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Enhancing quantum state tomography via resource-efficient attention-based neural networks
oleh: Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień
Format: | Article |
---|---|
Diterbitkan: | American Physical Society 2024-09-01 |
Deskripsi
In this paper, we propose a method for denoising experimental density matrices that combines standard quantum state tomography with an attention-based neural network architecture. The algorithm learns the noise from the data itself, without a priori knowledge of its sources. Firstly, we show how the proposed protocol can improve the averaged fidelity of reconstruction over linear inversion and maximum likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. Next, we demonstrate its use for out-of-distribution data in realistic scenarios. In particular, we consider squeezed states of few spins in the presence of depolarizing noise and measurement/calibration errors and certify its metrologically useful entanglement content. The protocol introduced here targets experiments involving few degrees of freedom and afflicted by a significant amount of unspecified noise. These include NISQ devices and platforms such as trapped ions or photonic qudits.