Classical 1-Absorbing Primary Submodules

oleh: Zeynep Yılmaz Uçar, Bayram Ali Ersoy, Ünsal Tekir, Ece Yetkin Çelikel, Serkan Onar

Format: Article
Diterbitkan: MDPI AG 2024-06-01

Deskripsi

Over the years, prime submodules and their generalizations have played a pivotal role in commutative algebra, garnering considerable attention from numerous researchers and scholars in the field. This papers presents a generalization of 1-absorbing primary ideals, namely the classical 1-absorbing primary submodules. Let <i>ℜ</i> be a commutative ring and <i>M</i> an <i>ℜ</i>-module. A proper submodule <i>K</i> of <i>M</i> is called a classical 1-absorbing primary submodule of <i>M</i>, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi><mi>z</mi><mi>η</mi><mo>∈</mo><mi>K</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>∈</mo><mi>M</mi></mrow></semantics></math></inline-formula> and nonunits <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mo>ℜ</mo></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi><mi>η</mi><mo>∈</mo><mi>K</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>z</mi><mi>t</mi></msup><mi>η</mi><mo>∈</mo><mi>K</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. In addition to providing various characterizations of classical 1-absorbing primary submodules, we examine relationships between classical 1-absorbing primary submodules and 1-absorbing primary submodules. We also explore the properties of classical 1-absorbing primary submodules under homomorphism in factor modules, the localization modules and Cartesian product of modules. Finally, we investigate this class of submodules in amalgamated duplication of modules.