Pronóstico de la demanda de energía eléctrica horaria en Colombia mediante redes neuronales artificiales

oleh: Santiago Medina Hurtado, Julián Moreno Cadavid, Juan Pablo Gallego Valencia

Format: Article
Diterbitkan: Universidad de Antioquia 2011-01-01

Deskripsi

El pronóstico de la demanda de energía eléctrica de un país o un sector determinado es una tarea de suma importancia no solo desde el punto de vista operativo, sino también del comercial. En este artículo se propone un modelo de pronóstico para la demanda de energía eléctrica en Colombia a nivel horario de una semana completa, mediante una Red Neuronal Artificial. El modelo utiliza información histórica en forma de datos rezagados de la serie de tiempo de demanda, así como información de eventos calendario previamente identificados que producen cambios significativos en los patrones de la demanda de energía a lo largo del año, por otra parte, el modelo propuesto considera un rezago en la información disponible para realizar los pronósticos de alrededor de tres semanas. Tal modelo fue validado a partir de datos reales de consumo de carga para una región específica de Colombia. Los resultados obtenidos fueron contrastados con un modelo auto regresivo (AR) y un modelo auto regresivo con variables exógenas (ARX). Tales resultados fueron satisfactorios en términos de la disminución general del error de ajuste, así como del comportamiento durante períodos de tiempo atípicos los cuales son difíciles de pronosticar con modelos tradicionales.