Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men.

oleh: Sanne Stegen, Inge Everaert, Louise Deldicque, Silvia Vallova, Barbora de Courten, Barbara Ukropcova, Jozef Ukropec, Wim Derave

Format: Article
Diterbitkan: Public Library of Science (PLoS) 2015-01-01

Deskripsi

Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes.Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats), 60% high-fat feeding (male rats), cafeteria feeding (male rats), 70% high-fat feeding (female mice). Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients) and muscle carnosine and gene expression of muscle fiber type markers were measured.Diet interventions in rodents (cafeteria and 70% high-fat feeding) induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1), +30% (p<0.05) and +39% (p<0.05), respectively). The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05) and tended to increase in the diabetic men (1.6-fold, p = 0.07), compared to healthy lean subjects.Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional). In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional). Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.