Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Mechanisms of Surface Charge Modification of Carbonates in Aqueous Electrolyte Solutions
oleh: Maryam H. Derkani, Ashleigh J. Fletcher, Maxim Fedorov, Wael Abdallah, Bastian Sauerer, James Anderson, Zhenyu J. Zhang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2019-10-01 |
Deskripsi
The influence of different types of salts (NaCl, CaCl<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, MgCl<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>, NaHCO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>, and Na<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>SO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>) on the surface characteristics of unconditioned calcite and dolomite particles, and conditioned with stearic acid, was investigated. This study used zeta potential measurements to gain fundamental understanding of physico-chemical mechanisms involved in surface charge modification of carbonate minerals in the presence of diluted salt solutions. By increasing the salt concentration of divalent cationic salt solution (CaCl<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> and MgCl<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>), the zeta potential of calcite particles was altered, resulting in charge reversal from negative to positive, while dolomite particles maintained positive zeta potential. This is due to the adsorption of potential-determining cations (Ca<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and Mg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>), and consequent changes in the structure of the diffuse layer, predominantly driven by coulombic interactions. On the other hand, chemical adsorption of potential-determining anions (HCO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>−</mo> </msubsup> </semantics> </math> </inline-formula> and SO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>4</mn> <mrow> <mn>2</mn> <mo>−</mo> </mrow> </msubsup> </semantics> </math> </inline-formula>) maintained the negative zeta potential of carbonate surfaces and increased its magnitude up to 10 mM, before decreasing at higher salt concentrations. Physisorption of stearic acid molecules on the calcite and dolomite surfaces changed the zeta potential to more negative values in all solutions. It is argued that divalent cations (Ca<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and Mg<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>) would result in positive and neutral complexes with stearic acid molecules, which may result in strongly bound stearic acid films, whereas ions resulting in negative mineral surface charges (SO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>4</mn> <mrow> <mn>2</mn> <mo>−</mo> </mrow> </msubsup> </semantics> </math> </inline-formula> and HCO<inline-formula> <math display="inline"> <semantics> <msubsup> <mrow></mrow> <mn>3</mn> <mo>−</mo> </msubsup> </semantics> </math> </inline-formula>) will cause stearic acid films to be loosely bound to the carbonate mineral surfaces. The suggested mechanism for surface charge modification of carbonates, in the presence of different ions, is changes in both distribution of ions in the diffuse layer and its structure as a result of ion adsorption to the crystal lattice by having a positive contribution to the disjoining pressures when changing electrolyte concentration. This work extends the current knowledge base for dynamic water injection design by determining the effect of salt concentration on surface electrostatics.