Fabrication and Enhanced Performance Evaluation of TiO<sub>2</sub>@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature

oleh: Altaf Hussain Rajpar, Mohamed Bashir Ali Bashir, Ethar Yahya Salih, Emad M. Ahmed

Format: Article
Diterbitkan: MDPI AG 2024-05-01

Deskripsi

A sequence of dye-sensitized solar cells is proposed, utilizing TiO<sub>2</sub>@Zn/Al-layered double hydroxide (LDH) as their starting materials, in which Ruthenizer N719 was used as a photon absorber. The anticipated system was turned into sheet-like TiO<sub>2</sub>@mixed metal oxide (MMO) via post-processing treatment. The crystal quality indicated a relation to power conversion efficiency (PCE); this was combined with a comparable morphology profile. In detail, the optimum DSSC device exhibited average sheet-like thickness and a dye loading amount of 43.11 nm and 4.28 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> mM/cm<sup>−2</sup>, respectively. Concurrently, a considerable PCE enhancement of the optimum DSSC device (TiO<sub>2</sub>@MMO-550°) was attained compared to pristine MMO (0.91%), which could be due to boosted electron transfer efficiency. Of the fabricated devices, DSSC fabricated at 550° exhibited the highest PCE (1.91%), with a 35.6% enhancement compared to that obtained at 450°, as a result of its increased open-circuit voltage (3.29 mA/cm<sup>2</sup>) and short-circuit current (0.81 V). The proposed work delivers an enhanced efficiency as compared to similar geometries.