Stability Analysis and Control of DFIG Based Wind Turbine Using FBC Strategy

oleh: Majid Tavoosi, Bahador Fani, Ehsan Adib

Format: Article
Diterbitkan: Najafabad Branch, Islamic Azad University 2013-10-01

Deskripsi

Doubly fed induction generator has numerous advantages in wind power generation over other types of generators. Once a DFIG is subjected to a large voltage dip, a large rotor voltage induces in the rotor windings. This leads to a large transient current in rotor circuit and the dc-link overvoltage, and may block power electronic converter operation. This paper first discusses dynamic modeling of DFIG wind turbines with the stator flux orientation. Then, by small signal analysis, it is found that the dynamic behavior of the DFIG based WT during voltage dip, is strongly affected by the stator dynamics. Next, a nonlinear control strategy based on flatness is proposed to improve the DFIG transient performance. The main interest of this control method is the possibility to define the behavior of the state variable system in the steady state as well as in transients. Since the DFIG electrical dynamics are nonlinear; better control performance is achieved with nonlinear control, compared with the linear control scheme. The proposed approach stabilizes the stator dynamics through rotor and grid side filter voltage control. The results of time domain simulations validate the effectiveness the nonlinear control strategy during voltage dip of generator terminal.