Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Value distribution of meromorphic solutions of certain difference Painlevé III equations
oleh: Yunfei Du, Minfeng Chen, Zongsheng Gao, Ming Zhao
Format: | Article |
---|---|
Diterbitkan: | SpringerOpen 2018-05-01 |
Deskripsi
Abstract In this paper, we investigate the difference Painlevé III equations w(z+1)w(z−1)(w(z)−1)2=w2(z)−λw(z)+μ $w(z+1)w(z-1)(w(z)-1)^{2}=w^{2}(z)-\lambda w(z)+\mu$ ( λμ≠0 $\lambda\mu\neq 0$) and w(z+1)w(z−1)(w(z)−1)2=w2(z) $w(z+1)w(z-1)(w(z)-1)^{2}=w^{2}(z)$, and obtain some results about the properties of the finite order transcendental meromorphic solutions. In particular, we get the precise estimations of exponents of convergence of poles of difference Δw(z)=w(z+1)−w(z) $\Delta w(z)=w(z+1)-w(z)$ and divided difference Δw(z)w(z) $\frac{\Delta w(z)}{w(z)}$, and of fixed points of w(z+η) $w(z+\eta)$ ( η∈C∖{0} $\eta\in C\setminus\{0\}$).