Viscosity and physical state of sucrose mixed with ammonium sulfate droplets

oleh: R. Jeong, J. Lilek, A. Zuend, R. Xu, M. N. Chan, M. N. Chan, D. Kim, H. G. Moon, M. Song, M. Song

Format: Article
Diterbitkan: Copernicus Publications 2022-07-01

Deskripsi

<p>Although knowledge of the physical state of aerosol particles is essential to understand atmospheric chemistry model and measurements, information on the viscosity and physical state of aerosol particles consisting of organic and inorganic salts is still rare. Herein, we quantified viscosities at 293 <span class="inline-formula">±</span> 1 <span class="inline-formula">K</span> upon dehydration for the binary systems, sucrose–<span class="inline-formula">H<sub>2</sub>O</span> and ammonium sulfate (<span class="inline-formula">AS</span>)–<span class="inline-formula">H<sub>2</sub>O</span>, and the ternary systems, sucrose–<span class="inline-formula">AS</span>–<span class="inline-formula">H<sub>2</sub>O</span> for organic-to-inorganic dry mass ratios (OIRs) <span class="inline-formula">=</span> <span class="inline-formula">4:1</span>, <span class="inline-formula">1:1</span>, and <span class="inline-formula">1:4</span> using bead-mobility and poke-and-flow techniques. Based on the viscosity value of the aerosol particles, we defined the physical states of the total aerosol particles studied in this work. For binary systems, the viscosity of sucrose–<span class="inline-formula">H<sub>2</sub>O</span> particles gradually increased from <span class="inline-formula">∼</span> 4 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−1</sup></span> to <span class="inline-formula">&gt;</span> <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>8</sup></span> <span class="inline-formula">Pa s</span> when the relative humidity (RH) decreased from <span class="inline-formula">∼</span> 81 % to <span class="inline-formula">∼</span> 24 %, ranging from liquid to semisolid or solid state, which agrees with previous studies. The viscosity of <span class="inline-formula">AS</span>–<span class="inline-formula">H<sub>2</sub>O</span> particles remained in the liquid state (<span class="inline-formula">&lt;</span> 10<span class="inline-formula"><sup>2</sup></span> <span class="inline-formula">Pa s</span>) for RH <span class="inline-formula">&gt;</span> <span class="inline-formula">∼</span> 50 %, while for RH <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≤</mo><mo>∼</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="19pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="784b6ae6666a3d87719993abbda1edaf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-8805-2022-ie00001.svg" width="19pt" height="10pt" src="acp-22-8805-2022-ie00001.png"/></svg:svg></span></span> 50 %, the particles showed a viscosity of <span class="inline-formula">&gt;</span> <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>12</sup></span> <span class="inline-formula">Pa s</span>, corresponding to a solid state. In case of the ternary systems, the viscosity of organic-rich particles (OIR <span class="inline-formula">=</span> <span class="inline-formula">4:1</span>) gradually increased from <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−1</sup></span> to <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>8</sup></span> <span class="inline-formula">Pa s</span> for a RH decrease from <span class="inline-formula">∼</span> 81 % to <span class="inline-formula">∼</span> 18 %, similar to the binary sucrose–<span class="inline-formula">H<sub>2</sub>O</span> particles. This indicates that the sucrose–<span class="inline-formula">AS</span>–<span class="inline-formula">H<sub>2</sub>O</span> particles range from liquid to semisolid or solid across the RH. In the ternary particles for OIR <span class="inline-formula">=</span> <span class="inline-formula">1:1</span>, the viscosities ranged from less than <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>2</sup></span> for RH <span class="inline-formula">&gt;</span> 34 % to <span class="inline-formula">&gt;</span> <span class="inline-formula">∼</span> 1 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>8</sup></span> <span class="inline-formula">Pa s</span> at <span class="inline-formula">∼</span> 27 <span class="inline-formula">% RH</span>. The viscosities correspond to liquid for RH <span class="inline-formula">&gt;</span> <span class="inline-formula">∼</span> 34 %, semisolid for <span class="inline-formula">∼</span> 34 % <span class="inline-formula">&lt;</span> RH <span class="inline-formula">&lt;</span> <span class="inline-formula">∼</span> 27 %, and semisolid or solid for RH <span class="inline-formula">&lt;</span> <span class="inline-formula">∼</span> 27 %. Compared to the organic-rich particles, in the inorganic-rich particles (OIR <span class="inline-formula">=</span> <span class="inline-formula">1:4</span>), drastic enhancement in viscosity was observed as RH decreased; the viscosity increased by approximately 8 orders of magnitude during a decrease in RH from 43 % to 25 %, resulting in liquid to semisolid or solid in the RH range. Overall, all particles studied in this work were observed to exist as a liquid, semisolid, or solid depending on the RH. Furthermore, we compared the measured viscosities of ternary systems with OIRs of <span class="inline-formula">4:1</span>, <span class="inline-formula">1:1</span>, and <span class="inline-formula">1:4</span> to the predicted viscosities using the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients Viscosity model (AIOMFAC-VISC) predictions with the Zdanovskii–Stokes–Robinson (ZSR) organic–inorganic mixing model, with excellent model–measurement agreement for all OIRs.</p>