Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Pricing of Credit Risk Derivatives with Stochastic Interest Rate
oleh: Wujun Lv, Linlin Tian
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-08-01 |
Deskripsi
This paper deals with a credit derivative pricing problem using the martingale approach. We generalize the conventional reduced-form credit risk model for a credit default swap market, assuming that the firms’ default intensities depend on the default states of counterparty firms and that the stochastic interest rate follows a jump-diffusion Cox–Ingersoll–Ross process. First, we derive the joint Laplace transform of the distribution of the vector process <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>r</mi><mi>t</mi></msub><mo>,</mo><msub><mi>R</mi><mi>t</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> by applying piecewise deterministic Markov process theory and martingale theory. Then, using the joint Laplace transform, we obtain the explicit pricing of defaultable bonds and a credit default swap. Lastly, numerical examples are presented to illustrate the dynamic relationships between defaultable securities (defaultable bonds, credit default swap) and the maturity date.