Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Fractal calculus and its geometrical explanation
oleh: Ji-Huan He
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2018-09-01 |
Deskripsi
Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus. Keywords: Fractal temperature gradient, Hierarchical structure, Fractal derivative, Fractional derivative, Thermal resistance, Nanofiber membrane, Porous medium, Hausdorff derivative, Fractional differential equation