Model Misspecification and Assumption Violations With the Linear Mixed Model: A Meta-Analysis

oleh: Brandon LeBeau, Yoon Ah Song, Wei Cheng Liu

Format: Article
Diterbitkan: SAGE Publishing 2018-12-01

Deskripsi

This meta-analysis attempts to synthesize the Monte Carlo (MC) literature for the linear mixed model under a longitudinal framework. The meta-analysis aims to inform researchers about conditions that are important to consider when evaluating model assumptions and adequacy. In addition, the meta-analysis may be helpful to those wishing to design future MC simulations in identifying simulation conditions. The current meta-analysis will use the empirical type I error rate as the effect size and MC simulation conditions will be coded to serve as moderator variables. The type I error rate for the fixed and random effects will be explored as the primary dependent variable. Effect sizes were coded from 13 studies, resulting in a total of 4,002 and 621 effect sizes for fixed and random effects respectively. Meta-regression and proportional odds models were used to explore variation in the empirical type I error rate effect sizes. Implications for applied researchers and researchers planning new MC studies will be explored.