Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Characterization of Polyphenolic Compounds from <i>Bacopa procumbens</i> and Their Effects on Wound-Healing Process
oleh: Adriana Martínez-Cuazitl, María del Consuelo Gómez-García, Oriana Hidalgo-Alegria, Olivia Medel Flores, José Alberto Núñez-Gastélum, Eduardo San Martín Martínez, Ada María Ríos-Cortés, Mario Garcia-Solis, David Guillermo Pérez-Ishiwara
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2022-10-01 |
Deskripsi
Wounds represent a medical problem that contributes importantly to patient morbidity and to healthcare costs in several pathologies. In Hidalgo, Mexico, the <i>Bacopa procumbens</i> plant has been traditionally used for wound-healing care for several generations; in vitro and in vivo experiments were designed to evaluate the effects of bioactive compounds obtained from a <i>B. procumbens</i> aqueous fraction and to determine the key pathways involved in wound regeneration. Bioactive compounds were characterized by HPLC/QTOF-MS, and proliferation, migration, adhesion, and differentiation studies were conducted on NIH/3T3 fibroblasts. Polyphenolic compounds from <i>Bacopa procumbens (PB)</i> regulated proliferation and cell adhesion; enhanced migration, reducing the artificial scratch area; and modulated cell differentiation. <i>PB</i> compounds were included in a hydrogel for topical administration in a rat excision wound model. Histological, histochemical, and mechanical analyses showed that <i>PB</i> treatment accelerates wound closure in at least 48 h and reduces inflammation, increasing cell proliferation and deposition and organization of collagen at earlier times. These changes resulted in the formation of a scar with better tensile properties. Immunohistochemistry and RT-PCR molecular analyses demonstrated that treatment induces (i) overexpression of transforming growth factor beta (TGF-β) and (ii) the phosphorylation of Smad2/3 and ERK1/2, suggesting the central role of some <i>PB</i> compounds to enhance wound healing, modulating TGF-β activation.