Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Real- and Imaginary-Time Evolution with Compressed Quantum Circuits
oleh: Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, Frank Pollmann
Format: | Article |
---|---|
Diterbitkan: | American Physical Society 2021-03-01 |
Deskripsi
The current generation of noisy intermediate-scale quantum computers introduces new opportunities to study quantum many-body systems. In this paper, we show that quantum circuits can provide a dramatically more efficient representation than current classical numerics of the quantum states generated under nonequilibrium quantum dynamics. For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers. We benchmark the algorithms by finding the ground state and simulating a global quench of the transverse-field Ising model with a longitudinal field on a classical computer. Furthermore, we implement (classically optimized) gates on a quantum processing unit and demonstrate that our algorithm effectively captures real-time evolution.