Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Microwave-Assisted Synthesis of Co3(PO4)2 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media
oleh: Prabhakarn Arunachalam, Maged N. Shaddad, Abdullah Salah Alamoudi, Mohamed A. Ghanem, Abdullah M. Al-Mayouf
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2017-04-01 |
Deskripsi
Low-cost and high-performance advanced electrocatalysts for direct methanol fuel cells are of key significance for the improvement of environmentally-pleasant energy technologies. Herein, we report the facile synthesis of cobalt phosphate (Co3(PO4)2) nanospheres by a microwave-assisted process and utilized as an electrocatalyst for methanol oxidation. The phase formation, morphological surface structure, elemental composition, and textural properties of the synthesized (Co3(PO4)2) nanospheres have been examined by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm investigations. The performance of an electrocatalytic oxidation of methanol over a Co3(PO4)2 nanosphere-modified electrode was evaluated in an alkaline solution using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Detailed studies were made for the methanol oxidation by varying the experimental parameters, such as catalyst loading, methanol concentration, and long-term stability for the electro-oxidation of methanol. The good electrocatalytic performances of Co3(PO4)2 should be related to its good surface morphological structure and high number of active surface sites. The present investigation illustrates the promising application of Co3(PO4)2 nanospheres as a low-cost and more abundant electrocatalyst for direct methanol fuel cells.