Effects of Cu/Er on Tensile Properties of Cast Al-Si Alloy at Low Temperature

oleh: Huidi Zhang, Bin Chen, Jianfei Hao, Huishu Wu, Ming Chen, Weirong Li, Runxia Li, Biao Wang

Format: Article
Diterbitkan: MDPI AG 2023-01-01

Deskripsi

The current protocol presents the effects of the addition of Cu, rare earth Er, and Cu-Er composite elements on the microstructure of the Al-10Si-0.3Mg alloy. The variations in their low-temperature tensile properties were also investigated. The addition of rare earth Er elements, Cu elements, and Cu-Er composite elements increased the strength of all three groups of alloys when stretched at low temperatures (−60 °C). Further, the elongation of the alloy increased with the addition of Er, while the elongation of the other two groups decreased. The low-temperature (−60 °C) tensile strength of the alloy with the same composition was higher than that at room temperature (20 °C), but the elongation decreased. Notably, by adding rare earth Er to the Al-10Si-0.3Mg alloy, the three-dimensional morphology was changed from coarse dendritic to fine fibrous, the secondary dendritic arm spacing (SDAS) of the alloy was reduced, and the grains were refined. The Al<sub>2</sub>Cu phase, Al-Si-Cu-Mg quaternary phase, and Cu-rich phase appeared in the alloy with the addition of Cu elements, but the Si phase morphology and α-Al dendrites were not significantly improved. Interestingly, the Si phase morphology of the alloy was improved by adding Cu-Er composite elements, and SDAS was reduced. Still, the Al<sub>2</sub>Cu phase, Al-Si-Cu-Mg quaternary phase, and Cu-rich phase were not much improved.