New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales

oleh: Ahmed A. El-Deeb, Hijaz Ahmad, Jan Awrejcewicz

Format: Article
Diterbitkan: MDPI AG 2021-10-01

Deskripsi

Building on the work of Josip Pečarić in 2013 and 1982 and on the work of Srivastava in 2017. We prove some new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable dynamic inequalities of Steffensen-type on time scales. In the case when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we obtain some well-known time scale inequalities due to Steffensen inequalities. For some specific time scales, we further show some relevant inequalities as special cases: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable integral inequalities and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-conformable discrete inequalities. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.