Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Expression of a Truncated Form of Ribosomal Protein L3 Confers Resistance to Pokeweed Antiviral Protein and the Fusarium Mycotoxin Deoxynivalenol
oleh: Rong Di, Nilgun E. Tumer
Format: | Article |
---|---|
Diterbitkan: | The American Phytopathological Society 2005-08-01 |
Deskripsi
The contamination of important agricultural products such as wheat, barley, or maize with the trichothecene mycotoxin deoxynivalenol (DON) due to infection with Fusarium species is a worldwide problem. Trichothecenes inhibit protein synthesis by targeting ribosomal protein L3. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein binds to L3 to depurinate the α–sarcin/loop of the large rRNA. Plants transformed with the wild-type PAP show lesions and express very low levels of PAP because PAP autoregulates its expression by destabilizing its own mRNA. We show here that transgenic tobacco plants expressing both the wild-type PAP and a truncated form of yeast L3 (L3δ) are phenotypically normal. PAP mRNA and protein levels are very high in these plants, indicating that L3δ suppresses the autoregulation of PAP mRNA expression. Ribosomes are not depurinated in the transgenic plants expressing PAP and L3δ, even though PAP is associated with ribosomes. The expression of the endogenous tobacco ribosomal protein L3 is up-regulated in these plants and they are resistant to the Fusarium mycotoxin DON. These results demonstrate that expression of an N-terminal fragment of yeast L3 leads to trans-dominant resistance to PAP and the trichothecene mycotoxin DON, providing evidence that both toxins target L3 by a common mechanism.