Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Integrated identification of key genes and pathways in Alzheimer’s disease via comprehensive bioinformatical analyses
oleh: Tingting Yan, Feng Ding, Yan Zhao
| Format: | Article |
|---|---|
| Diterbitkan: | BMC 2019-07-01 |
Deskripsi
Abstract Background Alzheimer’s disease (AD) is known to be caused by multiple factors, meanwhile the pathogenic mechanism and development of AD associate closely with genetic factors. Existing understanding of the molecular mechanisms underlying AD remains incomplete. Methods Gene expression data (GSE48350) derived from post-modern brain was extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were derived from hippocampus and entorhinal cortex regions between AD patients and healthy controls and detected via Morpheus. Functional enrichment analyses, including Gene Ontology (GO) and pathway analyses of DEGs, were performed via Cytoscape and followed by the construction of protein-protein interaction (PPI) network. Hub proteins were screened using the criteria: nodes degree≥10 (for hippocampus tissues) and ≥ 8 (for entorhinal cortex tissues). Molecular Complex Detection (MCODE) was used to filtrate the important clusters. University of California Santa Cruz (UCSC) and the database of RNA-binding protein specificities (RBPDB) were employed to identify the RNA-binding proteins of the long non-coding RNA (lncRNA). Results 251 & 74 genes were identified as DEGs, which consisted of 56 & 16 up-regulated genes and 195 & 58 down-regulated genes in hippocampus and entorhinal cortex, respectively. Biological analyses demonstrated that the biological processes and pathways related to memory, transmembrane transport, synaptic transmission, neuron survival, drug metabolism, ion homeostasis and signal transduction were enriched in these genes. 11 genes were identified as hub genes in hippocampus and entorhinal cortex, and 3 hub genes were identified as the novel candidates involved in the pathology of AD. Furthermore, 3 lncRNAs were filtrated, whose binding proteins were closely associated with AD. Conclusions Through GO enrichment analyses, pathway analyses and PPI analyses, we showed a comprehensive interpretation of the pathogenesis of AD at a systematic biology level, and 3 novel candidate genes and 3 lncRNAs were identified as novel and potential candidates participating in the pathology of AD. The results of this study could supply integrated insights for understanding the pathogenic mechanism underlying AD and potential novel therapeutic targets.