Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Nanoparticle-based CT visualization of pulmonary vasculature for minimally-invasive thoracic surgery planning.
oleh: Hsin-Pei Hu, Harley Chan, Hideki Ujiie, Nicholas Bernards, Kosuke Fujino, Jonathan C Irish, Jinzi Zheng, Kazuhiro Yasufuku
| Format: | Article |
|---|---|
| Diterbitkan: | Public Library of Science (PLoS) 2019-01-01 |
Deskripsi
<h4>Purpose</h4>To evaluate CF800, a novel lipid-based liposomal nanoparticle that co-encapsulates indocyanine green (ICG) and iohexol, for CT imaging of pulmonary vasculature in minimally-invasive thoracic surgery planning.<h4>Methods</h4>CF800 was intravenously administered to 7 healthy rabbits. In vivo CT imaging was performed 15 min post-injection, with a subset of animals imaged at 24h, 48h, and 72h post injection. Signal-to-background ratios (SBR) were calculated at the inferior vena cava and compared across time-points. A similar protocol was applied to 2 healthy pigs to evaluate the feasibility and efficacy in a large animal model. To evaluate the feasibility of clinical application, a survey was completed by 7 surgical trainees to assess pre- and post-injection CT images of rabbits and pigs. Responses on the discernibility of pulmonary vasculature sub-branches and comfort level to use the images for pre-operative planning were collected and analyzed.<h4>Results</h4>CF800 injection improved visualization of pulmonary vessels in both rabbit and pig models. The SBR of rabbit pulmonary vasculature was significantly higher after CF800 injection (range 3.7-4.4) compared to pre-injection (range 3.3-3.8, n = 7; p<0.05). SBR remained significantly different up to 24 hours after injection (range 3.7-4.3, n = 4; p<0.05). Trainees' evaluation found the post-injection CT images had significantly higher discernibility at the second vessel branch generation in both rabbit and pig models. Trainees identified smaller vasculature branch generations in the post-injection images compared to the pre-treatment images in both rabbit (mean 6.7±1.8 vs 5.4±2.1; p<0.05) and pig (mean 6.7±1.8 vs 5.4±2.1; p<0.05). Trainees were significantly more comfortable using post-injection images for surgical planning compared to the pre-injection images (rabbit: 8.1±1.1 vs. 4.7±2.1; pig: 7.6±2.1 vs. 4.9±2.2; p<0.05).<h4>Conclusion</h4>CF800 provides SBR and contrast enhancement of pulmonary vasculature which may assist in pre-surgical CT planning of minimally invasive thoracic surgery.