Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
New possible pharmacological targets for statins and ezetimibe
oleh: Mateusz Niedzielski, Marlena Broncel, Paulina Gorzelak-Pabiś, Ewelina Woźniak
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2020-09-01 |
Deskripsi
Statin therapy is the gold standard in the treatment of dyslipidemia. Understanding the mechanisms of action of these drugs provides an opportunity to define new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions. The present review indicates the existence of previously unknown therapeutic targets for statins, such as Krüppel-like Factor 2 (KLF-2), Cystathionine γ lyase (CSE) and the microRNA regulating eNOS activity and synthesis; nuclear PXR receptor and EB transcription factor regulating Inflammasome NLRP3 activity; the Dickkopf-related protein 1 (DKK-1), which inhibits the WNT signalling pathway; the peroxisome proliferator-activated receptor (PPAR-γ) in vascular smooth muscle cells (VSMCs), which regulates the cell cycle, and the ERK5-Nrf2 pathway, which reduces the level of harmful advanced glycation end-products (AGE) in VSMCs during diabetic vasculopathy. Importantly, our review includes a number of promising discoveries, specifically those related to the effects of miR-221, miR-222 and miR-27b on the structure, synthesis and activity of eNOS, such as microRNA-based therapies, which offer promise in future targeted therapies.In contrast to numerous experiments confirming the pleiotropic effect of statins, there is still insufficient evidence on the pleiotropic effect of ezetimibe, which goes beyond its basic inhibitory effect on intestinal cholesterol absorption. However, recent studies indicate that this effect is limited to inhibiting macrophage migration, decreasing VCAM-1 expression and reducing the levels of reactive oxygen species.Defining new therapeutic goals for pharmacotherapy in patients with atherosclerotic lesions and ensuring effective treatment of dyslipidemia and its associated cardiovascular complications requires a thorough understanding of both the mechanisms of action of these drugs and of atherosclerosis itself.