Vehicle Directional Cosine Calculation Method

oleh: Derek Hall, Timothy Sands

Format: Article
Diterbitkan: MDPI AG 2023-01-01

Deskripsi

Teaching kinematic rotations is a daunting task for even some of the most advanced mathematical minds. However, changing the paradigm can highly simplify envisioning and explaining the three-dimensional rotations. This paradigm change allows a high school student with an understanding of geometry to develop the matrix and explain the rotations at a collegiate level. The proposed method includes the assumption of a point (P) within the initial three-dimensional frame with axes (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover><mi>i</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover><mi>i</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="false">^</mo></mover><mi>i</mi></msub></mrow></semantics></math></inline-formula>). The method then utilizes a two-dimensional rotation view (2DRV) to measure how the coordinates of point P translate after a rotation around the initial axis. The equations are used in matrix notation to develop a rotation matrix for follow-on direction cosine matrixes. The method removes the requirement to use Euler’s formula, ultimately, providing a high school student with an elementary and repeatable process to compose and explain kinematic rotations, which are critical to attitude direction control systems commonly found in vehicles.