Singular solutions to Protter's problem for the 3-D wave equation involving lower order terms

oleh: Myron K. Grammatikopoulos, Tzvetan D. Hristov, Nedyu I. Popivanov

Format: Article
Diterbitkan: Texas State University 2003-01-01

Deskripsi

In 1952, at a conference in New York, Protter formulated some boundary value problems for the wave equation, which are three-dimensional analogues of the Darboux problems (or Cauchy-Goursat problems) on the plane. Protter studied these problems in a 3-D domain $Omega_0$, bounded by two characteristic cones $Sigma_1$ and $Sigma_{2,0}$, and by a plane region $Sigma_0$. It is well known that, for an infinite number of smooth functions in the right-hand side, these problems do not have classical solutions. Popivanov and Schneider (1995) discovered the reason of this fact for the case of Dirichlet's and Neumann's conditions on $Sigma_0$: the strong power-type singularity appears in the generalized solution on the characteristic cone $Sigma_{2,0}$. In the present paper we consider the case of third boundary-value problem on $Sigma_0$ and obtain the existence of many singular solutions for the wave equation involving lower order terms. Especifica ally, for Protter's problems in $mathbb{R}^{3}$ it is shown here that for any $nin N$ there exists a $C^{n}({Omega}_0)$-function, for which the corresponding unique generalized solution belongs to $C^{n}({Omega}_0slash O)$ and has a strong power type singularity at the point $O$. This singularity is isolated at the vertex $O$ of the characteristic cone $Sigma_{2,0}$ and does not propagate along the cone. For the wave equation without lower order terms, we presented the exact behavior of the singular solutions at the point $O$.