Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Platelet Inhibition by Low-Dose Acetylsalicylic Acid Reduces Neuroinflammation in an Animal Model of Multiple Sclerosis
oleh: Anna Vogelsang, Susann Eichler, Niklas Huntemann, Lars Masanneck, Hannes Böhnlein, Lisa Schüngel, Alice Willison, Karin Loser, Bernhard Nieswandt, Beate E. Kehrel, Alexander Zarbock, Kerstin Göbel, Sven G. Meuth
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-09-01 |
Deskripsi
Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4<sup>+</sup> T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A<sub>2</sub> were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.