Punzi-loss:

oleh: F. Abudinén, M. Bertemes, S. Bilokin, M. Campajola, G. Casarosa, S. Cunliffe, L. Corona, M. De Nuccio, G. De Pietro, S. Dey, M. Eliachevitch, P. Feichtinger, T. Ferber, J. Gemmler, P. Goldenzweig, A. Gottmann, E. Graziani, H. Haigh, M. Hohmann, T. Humair, G. Inguglia, J. Kahn, T. Keck, I. Komarov, J.-F. Krohn, T. Kuhr, S. Lacaprara, K. Lieret, R. Maiti, A. Martini, F. Meier, F. Metzner, M. Milesi, S.-H. Park, M. Prim, C. Pulvermacher, M. Ritter, Y. Sato, C. Schwanda, W. Sutcliffe, U. Tamponi, F. Tenchini, P. Urquijo, L. Zani, R. Žlebčík, A. Zupanc

Format: Article
Diterbitkan: SpringerOpen 2022-02-01

Deskripsi

Abstract We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.