Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with <sup>90</sup>Y Microspheres
oleh: Edoardo d’Andrea, Nico Lanconelli, Marta Cremonesi, Vincenzo Patera, Massimiliano Pacilio
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-08-01 |
Deskripsi
This study compares various methodologies for lung dosimetry in radioembolization using Monte Carlo (MC) simulations. A voxelized anthropomorphic phantom, created from a real patient’s CT scan, preserved the actual density distribution of the lungs. Lung dosimetry was evaluated for five lung-shunt (LS) cases using traditional methods: the mono-compartmental organ-level approach (MIRD), local energy deposition (LED), and convolution with voxel S-values, either with local density corrections (SVOX_L) or without (SVOX_ST). Additionally, a novel voxel S-value (VSV) kernel for lung tissue with an ICRU density of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.296</mn><mtext> </mtext><mi mathvariant="normal">g</mi><mo>/</mo><mi mathvariant="normal">c</mi><msup><mrow><mi mathvariant="normal">m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> was developed. Calculations were performed using either the ICRU lung density (Lung_296), the average lung density of the phantom (Lung_221), or the local density (Lung_L). The comparison revealed significant underestimations in the mean absorbed dose (AD) for the classical approaches: approximately −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>40</mn><mo>%</mo></mrow></semantics></math></inline-formula> for MIRD, −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>27</mn><mo>%</mo></mrow></semantics></math></inline-formula> for LED, −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo>%</mo></mrow></semantics></math></inline-formula> for SVOX_L, and −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>88</mn><mo>%</mo></mrow></semantics></math></inline-formula> for SVOX_ST. Similarly, calculations with the lung VSV kernel showed underestimations of about −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>62</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Lung_296, −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Lung_221, and −<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>35</mn><mo>%</mo></mrow></semantics></math></inline-formula> for Lung_L. Given the high heterogeneity of lung tissue, traditional dosimetric methods fail to provide accurate estimates of the mean <i>AD</i> for the lungs. Therefore, <i>MC</i> dosimetry based on patient images is recommended as the preferred method for precise assessment of lung <i>AD</i> during radioembolization.