Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
oleh: Ci Fu, Xiang Zhang, Amanda O. Veri, Kali R. Iyer, Emma Lash, Alice Xue, Huijuan Yan, Nicole M. Revie, Cassandra Wong, Zhen-Yuan Lin, Elizabeth J. Polvi, Sean D. Liston, Benjamin VanderSluis, Jing Hou, Yoko Yashiroda, Anne-Claude Gingras, Charles Boone, Teresa R. O’Meara, Matthew J. O’Meara, Suzanne Noble, Nicole Robbins, Chad L. Myers, Leah E. Cowen
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2021-11-01 |
Deskripsi
The analysis of essential genes in pathogens can be used to discover potential antimicrobial targets. Here, the authors use a machine learning model and chemogenomic analyses to generate genome-wide gene essentiality predictions for the fungal pathogen Candida albicans, define the function of three uncharacterized essential genes, and identify the target of a new antifungal compound.