Larmor power limit for cyclotron radiation of relativistic particles in a waveguide

oleh: N Buzinsky, R J Taylor, W Byron, W DeGraw, B Dodson, M Fertl, A García, A P Goodson, B Graner, H Harrington, L Hayen, L Malavasi, D McClain, D Melconian, P Müller, E Novitski, N S Oblath, R G H Robertson, G Rybka, G Savard, E Smith, D D Stancil, D W Storm, H E Swanson, J R Tedeschi, B A VanDevender, F E Wietfeldt, A R Young

Format: Article
Diterbitkan: IOP Publishing 2024-01-01

Deskripsi

Cyclotron radiation emission spectroscopy (CRES) is a modern technique for high-precision energy spectroscopy, in which the energy of a charged particle in a magnetic field is measured via the frequency of the emitted cyclotron radiation. The He6-CRES collaboration aims to use CRES to probe beyond the standard model physics at the TeV scale by performing high-resolution and low-background beta-decay spectroscopy of $ {} ^6\textrm{He}$ and $ {} ^{19}\textrm{Ne}$ . Having demonstrated the first observation of individual, high-energy (0.1–2.5 MeV) positrons and electrons via their cyclotron radiation, the experiment provides a novel window into the radiation of relativistic charged particles in a waveguide via the time-derivative (slope) of the cyclotron radiation frequency, $\mathrm{d}{f}_\textrm{c}/\mathrm{d}{t}$ . We show that analytic predictions for the total cyclotron radiation power emitted by a charged particle in circular and rectangular waveguides are approximately consistent with the Larmor formula, each scaling with the Lorentz factor of the underlying $e^\pm$ as γ ^4 . This hypothesis is corroborated with experimental CRES slope data.