Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Cobalt Ferrite Nanorods Synthesized with a Facile “Green” Method in a Magnetic Field
oleh: Alexander L. Kwiatkowski, Petr V. Shvets, Ivan S. Timchenko, Darya E. Kessel, Elizaveta D. Shipkova, Konstantin I. Maslakov, Ivan A. Kuznetsov, Dmitry A. Muravlev, Olga E. Philippova, Andrey V. Shibaev
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-03-01 |
Deskripsi
We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe<sup>3+</sup> and Co<sup>2+</sup> ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe<sub>2</sub>O<sub>4</sub> structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and “green” way to prepare CoFe<sub>2</sub>O<sub>4</sub> nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites.