Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells
oleh: Ke Su, Shui-Ling Zhao, Wen-Xia Yang, Chao-Sheng Lo, Isabelle Chenier, Min-Chun Liao, Yu-Chao Pang, Jun-Zheng Peng, Kana N. Miyata, Jean-Francois Cailhier, Jean Ethier, Jean-Baptiste Lattouf, Janos G. Filep, Julie R. Ingelfinger, Shao-Ling Zhang, John S. D. Chan
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-09-01 |
Deskripsi
The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/db<i>Nrf2</i> knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/db<i>Nrf2</i> KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with <i>NRF2</i> KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/db<i>Nrf2</i> KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. <i>NRF2</i> KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.