Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community
oleh: Haizhen Ma, Panpan Li, Xingwang Liu, Can Li, Shengkui Zhang, Xiaohan Wang, Xia Tao
Format: | Article |
---|---|
Diterbitkan: | BMC 2022-01-01 |
Deskripsi
Abstract Background Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. Results In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT–PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. Conclusions Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.