An Edge Computing and Ambient Data Capture System for Clinical and Home Environments

oleh: Pradyumna Byappanahalli Suresha, Chaitra Hegde, Zifan Jiang, Gari D. Clifford

Format: Article
Diterbitkan: MDPI AG 2022-03-01

Deskripsi

The non-contact patient monitoring paradigm moves patient care into their homes and enables long-term patient studies. The challenge, however, is to make the system non-intrusive, privacy-preserving, and low-cost. To this end, we describe an open-source edge computing and ambient data capture system, developed using low-cost and readily available hardware. We describe five applications of our ambient data capture system. Namely: (1) Estimating occupancy and human activity phenotyping; (2) Medical equipment alarm classification; (3) Geolocation of humans in a built environment; (4) Ambient light logging; and (5) Ambient temperature and humidity logging. We obtained an accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94</mn><mo>%</mo></mrow></semantics></math></inline-formula> for estimating occupancy from video. We stress-tested the alarm note classification in the absence and presence of speech and obtained micro averaged <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mn>1</mn></mrow></semantics></math></inline-formula> scores of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.98</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.93</mn></mrow></semantics></math></inline-formula>, respectively. The geolocation tracking provided a room-level accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>98.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The root mean square error in the temperature sensor validation task was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.3</mn><msup><mspace width="3.33333pt"></mspace><mo>°</mo></msup></mrow></semantics></math></inline-formula>C and for the humidity sensor, it was <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> Relative Humidity. The low-cost edge computing system presented here demonstrated the ability to capture and analyze a wide range of activities in a privacy-preserving manner in clinical and home environments and is able to provide key insights into the healthcare practices and patient behaviors.