Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
SO<sub>2</sub> and BrO emissions of Masaya volcano from 2014 to 2020
oleh: F. Dinger, F. Dinger, T. Kleinbek, S. Dörner, N. Bobrowski, N. Bobrowski, U. Platt, U. Platt, T. Wagner, T. Wagner, M. Ibarra, E. Espinoza
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2021-06-01 |
Deskripsi
<p>Masaya (Nicaragua, 12.0<span class="inline-formula"><sup>∘</sup></span> N, 86.2<span class="inline-formula"><sup>∘</sup></span> W; 635 m a.s.l.) is one of the few volcanoes hosting a lava lake, today. This study has two foci: (1) discussing the state of the art of long-term <span class="inline-formula">SO<sub>2</sub></span> emission flux monitoring with the example of Masaya and (2) the provision and discussion of a continuous data set on volcanic gas data with a large temporal coverage, which is a major extension of the empirical database for studies in volcanology as well as atmospheric bromine chemistry. We present time series of <span class="inline-formula">SO<sub>2</sub></span> emission fluxes and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">BrO</mi><mo>/</mo><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6b1ff19dbad33dbc3d45406e919bea5c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00001.svg" width="48pt" height="14pt" src="acp-21-9367-2021-ie00001.png"/></svg:svg></span></span> molar ratios in the gas plume of Masaya from March 2014 to March 2020 – covering the three time periods (1) before the lava lake appearance, (2) a period of high lava lake activity (November 2015 to May 2018), and (3) after the period of high lava lake activity. For these three time periods, we report average <span class="inline-formula">SO<sub>2</sub></span> emission fluxes of (<span class="inline-formula">1000±200</span>), (<span class="inline-formula">1000±300</span>), and (<span class="inline-formula">700±200</span>) t d<span class="inline-formula"><sup>−1</sup></span> and average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">BrO</mi><mo>/</mo><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e30adbcd92590ca9ce606f6a49723a9d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00002.svg" width="48pt" height="14pt" src="acp-21-9367-2021-ie00002.png"/></svg:svg></span></span> molar ratios of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mn mathvariant="normal">2.9</mn><mo>±</mo><mn mathvariant="normal">1.5</mn><mo>)</mo><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="831e375d74d8c0d303177f1252004bbd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00003.svg" width="85pt" height="15pt" src="acp-21-9367-2021-ie00003.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mn mathvariant="normal">4.8</mn><mo>±</mo><mn mathvariant="normal">1.9</mn><mo>)</mo><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="770134696f9d876c04ec2e8a97853f54"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00004.svg" width="85pt" height="15pt" src="acp-21-9367-2021-ie00004.png"/></svg:svg></span></span>, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mn mathvariant="normal">5.5</mn><mo>±</mo><mn mathvariant="normal">2.6</mn><mo>)</mo><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="65ccbd3454413ca5cdea9787a7d0beac"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00005.svg" width="85pt" height="15pt" src="acp-21-9367-2021-ie00005.png"/></svg:svg></span></span>.</p> <p>Our <span class="inline-formula">SO<sub>2</sub></span> emission flux retrieval is based on a comprehensive investigation of various aspects of spectroscopic retrievals, the wind conditions, and the plume height. We observed a correlation between the <span class="inline-formula">SO<sub>2</sub></span> emission fluxes and the wind speed in the raw data. We present a partial correction of this artefact by applying dynamic estimates for the plume height as a function of the wind speed. Our retrieved <span class="inline-formula">SO<sub>2</sub></span> emission fluxes are on average a factor of 1.4 larger than former estimates based on the same data.</p> <p>Further, we observed different patterns in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">BrO</mi><mo>/</mo><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9430ed9c4253e10006c839c470924f64"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00006.svg" width="48pt" height="14pt" src="acp-21-9367-2021-ie00006.png"/></svg:svg></span></span> time series: (1) an annual cyclicity with amplitudes between 1.4 and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="8160105bd78af28c8574c8849ced7339"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00007.svg" width="51pt" height="13pt" src="acp-21-9367-2021-ie00007.png"/></svg:svg></span></span> and a weak semi-annual modulation, (2) a step increase by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.7</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1c5594f7a413bfdd8734d6e11ef1044f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00008.svg" width="51pt" height="13pt" src="acp-21-9367-2021-ie00008.png"/></svg:svg></span></span> in late 2015, (3) a linear trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="9bc2f029791fcdea103317942d27ed33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00009.svg" width="51pt" height="13pt" src="acp-21-9367-2021-ie00009.png"/></svg:svg></span></span> per year from November 2015 to March 2018, and (4) a linear trend of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">5</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="59pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="9eb890aaf64466b550110a6e60c5f0c1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00010.svg" width="59pt" height="13pt" src="acp-21-9367-2021-ie00010.png"/></svg:svg></span></span> per year from June 2018 to March 2020. The step increase in 2015 coincided with the lava lake appearance and was thus most likely caused by a change in the magmatic system. We suggest that the cyclicity might be a manifestation of meteorological cycles. We found an anti-correlation between the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">BrO</mi><mo>/</mo><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7507ad34a1a47c238c3486bfe3773e42"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00011.svg" width="48pt" height="14pt" src="acp-21-9367-2021-ie00011.png"/></svg:svg></span></span> molar ratios and the atmospheric water concentration (correlation coefficient of <span class="inline-formula">−0.47</span>) but, in contrast to that, neither a correlation with the ozone mixing ratio (<span class="inline-formula">+0.21</span>) nor systematic dependencies between the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">BrO</mi><mo>/</mo><msub><mi mathvariant="normal">SO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="81ca8d0618b2f5a1e0f4cc515ca9ed69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9367-2021-ie00012.svg" width="48pt" height="14pt" src="acp-21-9367-2021-ie00012.png"/></svg:svg></span></span> molar ratios and the atmospheric plume age for an age range of 2–20 min after the release from the volcanic edifice. The two latter observations indicate an early stop of the autocatalytic transformation of bromide <span class="inline-formula">Br<sup>−</sup></span> solved in aerosol particles to atmospheric BrO.</p>