Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route
oleh: Sanjay Godara, Nidhi Sinha, Geeta Ray, Binay Kumar
Format: | Article |
---|---|
Diterbitkan: | Taylor & Francis Group 2014-12-01 |
Deskripsi
Phase-pure multiferroic bismuth ferrite (BFO) nanoparticles were synthesized by energy efficient, simple and low temperature sol–gel followed by auto-combustion route. Highly crystalline and well-shaped BFO nanoparticles of size about 50 nm were observed in TEM. Thermal analysis was used to optimize the calcination temperature as 500 °C. An endothermic peak at 834 °C has been detected in the DTA curve, representing the Curie temperature. The dielectric anomaly around Neel temperature (TN) was observed signifying the magnetoelectric coupling. The BFO nanoparticles were found to be highly resistive (ρ ∼ 3 × 109 Ω-cm) and had very low leakage current of the order of μA/cm2, which resulted from phase purity. A significantly enhanced weak ferromagnetism was observed due to smaller particles size and remnant magnetization and coercive field were 0.067 emu/g and 185 Oe, respectively. P–E loop confirmed the ferroelectric behavior of BFO nanoparticles. The direct band gap energy was calculated to be 2.2 eV from UV–vis studies.