Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Structural and Optical Investigation of Grown GaN Film on Porous Silicon Substrate Prepared by PLD
oleh: Haneen Jabar, Makram Fakhri, Mohammed AbdulRazzaq, Subash C. B. Gopinath
Format: | Article |
---|---|
Diterbitkan: | Unviversity of Technology- Iraq 2023-02-01 |
Deskripsi
The optical properties of a grown gallium nitride (GaN) thin film on a porous silicon (P-Si) substrate was investigated. A Photo-electrochemical etching method was used to synthesize the Psi substrate, and a physical deposition method (pulsed laser deposition) of 1064 nm Q-switch Nd: YAG laser with a vacuum of 10−2 mbar was used to grow a thin layer of GaN on a prepared P-Si substrate. X-Ray diffraction displayed that GaN film has a high crystalline nature at the (002) plane. The photoluminescence of GaN film exhibited ultraviolet PL with a peak wavelength of 374 nm corresponding to GaN material and red PL with a peak wavelength of 730 nm corresponding to Psi substrate. The absorption coefficient of the P-Si substrate and grown GaN thin film was obtained from the absorption calculation of UV-Vis diffused spectroscopy at ambient temperature in the 230–1100 nm wavelength range. Extinction coefficients, optical energy gap, and refractive index of both the P-Si substrate and the grown GaN thin film have been determined, respectively. The direct optical energy gaps of both the P-Si substrate and grown GaN have also been determined using three methods: Plank’s relation with photoluminescence (PL) spectroscopy, Tauc'relation, and Kubulka-Munk argument with Uv-Vis diffused spectroscopy. It was observed that the optical energy gap of the P-Si substrate was 2.1 eV, while the grown GaN thin film had a multi-optical energy gap of 3.3 eV and 1.6 eV. A good agreement has been obtained between these mentioned methods.