The Surviving Rate of IC-Planar Graphs

oleh: Xiaoxue Hu, Jiacheng Hu, Jiangxu Kong

Format: Article
Diterbitkan: MDPI AG 2022-06-01

Deskripsi

Let <i>k</i> and <i>n</i> be two positive integers. Firefighting is a discrete dynamical process of preventing the spread of fire. Let <i>G</i> be a connected graph <i>G</i> with <i>n</i> vertices. Assuming a fire starts at one of the vertices of <i>G</i>, the firefighters choose <i>k</i> unburned vertices at each step, and then the fire spreads to all unprotected neighbors of the burning vertices. The process continues until the fire stops spreading. The goal is to protect as many vertices as possible. When a fire breaks out randomly at a vertex of <i>G</i>, its <i>k</i>-surviving rate, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the expected number of saved vertices. A graph is IC-planar if it has a drawing in which each edge cross once and their endpoints are disjoint. In this paper, we prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>></mo><mfrac><mn>1</mn><mn>124</mn></mfrac></mrow></semantics></math></inline-formula> for every IC-planar graph <i>G</i>. This is proven by the discharging method and the locally symmetric of the graph.